Synthesis and spectroscopic characterization of dicyclohexyltin derivatives of dipeptides, and in vitro effects against MDA-MB 231 breast cancer cells: Crystal structures of dicyclohexyltin glycylglycinate and glycylalaninate

Friedo Huber,* Michael Vornefeld,* Hans Preut,* Erwin von Angerer† and Giuseppe Ruisi‡

*Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50, Federal Republic of Germany, †Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, D-8400 Regensburg, Federal Republic of Germany, and ‡Dipartimento di Chimica Inorganica, Università di Palermo, Italy

Dicyclohexyltin derivatives Cy_2SnL (Cy = cyclohexyl) of the dipeptides H_2L , glycylglycine, glycylalanine, alanylglycine, glycylvaline, glycylmethionine, glycylphenylalanine and glycyltyrosine, have been obtained by neutralization of Cy_3SnO and H_2L .

The crystal structures of Cy_2SnL (L=glycylglycinate, glycylalaninate) have been determined by single X-ray diffraction. Tin in each case has a distorted trigonal bipyramidal environment with the dipeptide acting as a tridentate NNO-ligand. From IR-data, and in some cases from ¹¹⁹Sn Mössbauer and ¹¹⁹Sn NMR data, analogous molecular structures are inferred for the other compounds Cy_2SnL . Spectroscopic data indicate that the solid-state structures are retained in organic solvents.

In vitro tests showed Cy_2SnL ($H_2L=$ glycylglycine, glycylalanine, alanylglycine, glycylphenylalanine, glycyltyrosine) to exhibit high cytotoxicity against MDA/MB 231 breast cancer cells, while Me_2SnL (L= glycylalaninate, glycyltyrosinate, glycyltyrotophanate), and $R_2Snglycylglycinate$ (R=n-Bu, Ph) proved to be much less active.

Keywords: Dicyclohexyltin dipeptides, dicyclohexyltin glycylglycinate, dicyclohexyltin glycylalaninate, crystal structures

INTRODUCTION

The antileukemia activity demonstrated by organotin compounds has been suggested to be ultimately due to R₂Sn(IV) moieties, possibly interhydrolysis.1,2 produced during mediates Considering that the activity of such compounds follows the trend that ethyl and phenyl groups bound to tin appear to induce antileukemia activity, 1,3 it seemed worthwhile to extend activity studies to new compounds with R₂Sn(IV) central units which had not yet been subjected to screening tests. With this in mind we synthesized, following earlier studies, 4-9 dicyclohexyltin(IV) derivatives of dipeptides for the first time; we report here on their preparation and characterization and on in vitro effects on breast cancer cells.

EXPERIMENTAL

Cy₂SnO (Cy=cyclohexyl) was prepared according to Ref. 10. The dipeptides were a gift from Degussa, Frankfurt, Federal Republic of Germany.

The new compounds Cy_2SnL listed in Table 1 (H_2L = dipeptide; $H_2GlyGly$ = glycylglycine; $H_2GlyAla$ = glycylalanine; $H_2AlaGly$ = alanylglycine; $H_2GlyVal$ = glycylvaline;

Table 1	Analytical data	for dicyclohex	yltin derivatives	of dipeptides Cy ₂ SnL
---------	-----------------	----------------	-------------------	-----------------------------------

					Analysis (%): Found (Calcd)			
Compound		Method of synthesis	Yield (%)	М.р. (°С)	C	Н	N	
Cy ₂ SnGlyGly	1	A	90.3	262-263	46.3	6.8	6.7	
					(46.3)	(6.8)	(6.8)	
		В	72.6	262-263	45.8	6.9	6.8	
					(46.3)	(6.8)	(6.8)	
Cy ₂ SnGlyAla	2	Α	67.6	266-269	45.7	6.9	6.4	
					(47.6)	(7.1)	(6.5)	
		В	71.5	266-269	47.3	7.0	6.5	
					(47.6)	(7.1)	(6.5)	
Cy ₂ SnAlaGly	3	Α	83.9	239a	46.9	7.1	6.5	
					(47.6)	(7.1)	(6.5)	
		В	93.2	239a	47.2	7.1	6.4	
					(47.6)	(7.1)	(6.5)	
Cy ₂ SnGlyVal	4	Α	67.8	182-183	48.3	7.4	5.9	
					(49.9)	(7.4)	(6.1)	
Cy ₂ SnGlyMet	5	Α	72.4	192-194	46.0	7.1	5.7	
					(46.7)	(7.0)	(5.7)	
Cy ₂ SnGlyPhe	6	Α	75.3	228-230	54.5	6.5	5.2	
					(54.7)	(6.8)	(5.5)	
Cy ₂ SnGlyTyr	7	Α	85.8	286a	52.7	6.4	5.2	
					(53.0)	(6.6)	(5.4)	

^a With decomposition.

 $H_2GlyMet = glycylmethionine;$ $H_2GlyPhe = glycylphenylalanine;$ $H_2GlyTyr = glycyltyrosine)$ were synthesized by refluxing a mixture of 2 mmol each of Cy_2SnO and H_2L (Method A) or of Cy_2SnBr_2 and Na_2L (Method B) in 50 cm^3 of anhydrous methanol. In the case of Method A, 2,2-dimethoxypropane was added to remove the water of reaction. After reducing the volume of the solution to about $5-10 \text{ cm}^3$, petroleum ether/ether (1:1, v/v) was added to precipitate the product. The analytical data of the new compounds are compiled in Table 1.

Elemental analyses were carried out with an Elemental Analyzer (1106 Carlo Erba, Milano, Italy). Melting points were measured in open capillaries and are uncorrected. Molecular weights were determined osmometrically in anhydrous methanol; values for 1, 2 and 3 were determined to be 417 (415), 441 (429), and 437 (429), respectively (calculated values in parentheses). The IR spectra were recorded on a Perkin–Elmer grating spectrometer (PE 580B) in KBr, CD₃OD and DMSO. ¹¹⁹Sn NMR spectra were recorded in CD₃OD on a Bruker AM300 and chemical shifts were measured in ppm downfield from an external Me₄Sn reference.

The 119Sn Mössbauer spectral data were

obtained with the apparatus and data reduction techniques described in a preceding paper.⁹

Single crystals of Cy₂SnGlyGly Cy₂SnGlyAla have been obtained from methanol solutions by adding a mixture of petroleum ether and diethyl ether. A Nonius CAD-4 diffractometer served to measure the intensities of reflexions of single crystals of 1 and 2 for X-ray structure determination. Graphite-monochromated Ag K α radiation, $\lambda = 0.5608$ Å (T = 291(1) K) was used. Crystallographic data are given in Table 2. Lattice parameters were taken from the leastsquares fit with 25 reflexions up to $2\theta = 23.7^{\circ}$ (1) 25.8° respectively, (2),Lorentz-polarization correction and absorption correction via ψ scans. Structure determination was performed via the Patterson function, ΔF synthesis, and full-matrix least-squares refinements with anisotropic temperature factors for all non-H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated positions (C-H 1.08 Å). Complex neutral atom scattering factors were taken from Refs 11 and 12. The absolute configuration was not determined. The following programs were used: Enraf-Nonius Structure Determination Package, 13 SHELX7614

SCHAKAL.¹⁵ Atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms are given in Table 3, and bond lengths and bond angles in Table 4. (Other crystallographic details are available from the authors upon request.)

The tumor-inhibiting effect of the compounds 1, 2, 3, 6 and 7 and of some other diorganotin derivatives of dipeptides [Me₂SnGlyAla⁸ (8), Me₂SnGlyTyr⁸ (9), Me₂SnGlyTry⁸ (10), n-Bu₂SnGlyGly^{4,8} (11) and Ph₂SnGlyGly^{5,8} (12)] was tested *in vitro* using the hormone-independent human mammary carcinoma cell line MDA-MB 231. Inhibition of cell growth and [³H] thymidine incorporation was measured as described previously. ¹⁶

RESULTS AND DISCUSSION

The diorganotin derivatives of dipeptides Cy₂SnL, Nos 1 to 7, listed in Table 1, were prepared by reaction of Cy₂SnO with the appro-

priate dipeptide H₂L, or of Cy₂SnBr₂ with Na₂L in methanol, in a 1:1 mole ratio. Compounds 1–6 are soluble in methanol, 7 is soluble in warm DMSO and slightly soluble in boiling water. According to molecular weight measurements, compounds 1, 2 and 3 for which values could be obtained (*vide supra*) are monomeric in methanol.

In the IR spectra of the compounds (Table 5) the rather sharp bands associated with $\nu(NH_3^+)$ of H_2L between 3060 to 3080 cm⁻¹ are missing, so bonding of the $Cy_2Sn(IV)$ moiety to the carboxylate group is inferred. The values of $\Delta\nu$ [= $\nu_{as}(COO) - \nu_s$ (COO)] are higher than 200 cm⁻¹ in 1–6, and this would suggest the presence of monodentate carboxylate groups. ^{17,18} The 'borderline' value of 200 cm⁻¹ in 7 might be indicative of an unsymmetrically bridging carboxylate group. The comparison of $\nu(NH_{amino})$ of the appropriate sodium salts (3350–3380 cm⁻¹; mean value of $\nu(NH_{amino})$ bands of $Na_2GlyVal$: 3360 cm⁻¹) with those of the solid compounds 1–7

Table 2 Crystallographic data

	$Cy_2SnGlyGly (1) (C_6H_{11})_2SnC_4H_6N_2O_3$	$Cy_2SnGlyAla$ (2) $(C_6H_{11})_2SnC_5H_8N_2O_3$
Molar mass (g mol ⁻¹)	415.10	429.13
Space group	$P2_{1}2_{1}2_{1}$	$P2_12_12_1$
a (Å)	10.255(5)	10.040(3)
b (Å)	13.007(9)	13.453(5)
$c(\mathring{A})$	13.638(9)	14.077(9)
Volume (Å ³)	1819.1	1901.4
Z	4	4
density $D_{\text{calc}}(\text{Mg m}^{-3})$	1.516	1.499
μ , Ag K α (mm ⁻¹)	0.75	0.72
F(000)	848	880
Crystal dimensions (mm)	$0.30 \times 0.35 \times 0.29$	$0.29 \times 0.35 \times 0.29$
Method	Ag K α , $\omega/2\theta$ scan	Ag K α , $\omega/2\theta$ scan
	$3.3-6.6^{\circ} \text{min}^{-1} \text{in} \theta$	$2.0-10.0^{\circ} \text{ min}^{-1} \text{ in } \theta$
Range	$0 \le h \le 12$,	$-12 \le h \le 12$
č	$0 \le k \le 15$,	$0 \le k \le 16$
	$-16 \le l \le 16$	$0 \le l \le 17$
θ	$1^{\circ} \le \theta \le 20^{\circ}$	$1^{\circ} \le \theta \le 20^{\circ}$
No. of reflexions measured	3870	4015
No. of reflexions used for structure determination	$3110 \ (F \ge 4.0\sigma(F))$	$3126 \ (F \ge 4.0\sigma(F))$
R (unweighted)	0.028	0.026
Max./min. transmission	1.00/0.85	1.00/0.95
Largest peak in final ΔF map (eA ⁻³)	$\pm 0.7(3)$	$\pm 0.4(2)$
No. of reflexions for refinements on F	3110	3126
No. of refined parameters	200	209
$w = k/(\sigma^2(F) + 0.005F^2)$	k = 0.91	k = 0.24
S	1.1	1.1
wR	0.034	0.030
$(\Delta/\sigma)_{\max}$	0.08	0.03

Table 3	Atomic coordinates and equivalent isot	tropic thermal parameters ($\mathring{A}^2 \times 10^3$)	

	Cy ₂ SnGlyGl	y (1)			Cy ₂ SnGlyAla (2)				
	x	y	z	$U_{\rm eq}^{-a}$	x	y	z	$U_{\rm eq}^{-a}$	
Sn	0.59423(3)	0.36862(2)	0.72356(2)	32	0.57149(2)	0.33196(2)	0.71592(2)	28	
O(1)	0.4861(4)	0.5113(2)	0.7367(3)	44	0.4879(3)	0.4791(2)	0.7310(2)	39	
O(2)	0.3026(4)	0.5892(3)	0.6936(3)	52	0.3141(3)	0.5731(3)	0.6963(3)	53	
O(3)	0.3527(5)	0.2623(4)	0.4982(4)	72	0.2852(3)	0.2499(3)	0.5135(3)	47	
N(1)	0.4637(4)	0.3643(3)	0.6051(2)	37	0.4254(3)	0.3375(2)	0.6107(2)	31	
N(2)	0.6465(4)	0.2216(3)	0.6413(3)	39	0.5929(3)	0.1854(2)	0.6338(2)	35	
C(1)	0.3840(5)	0.5222(3)	0.6828(4)	38	0.3838(4)	0.4993(3)	0.6821(3)	36	
C(2)	0.3673(5)	0.4457(4)	0.5992(4)	47	0.3477(4)	0.4278(3)	0.6010(3)	34	
C(3)	0.4434(5)	0.2780(4)	0.5561(3)	40	0.3844(4)	0.2563(3)	0.5655(3)	33	
C(4)	0.5395(5)	0.1928(4)	0.5744(4)	47	0.4689(5)	0.1632(3)	0.5815(3)	40	
C(5)	_				0.3743(7)	0.4783(4)	0.5054(4)	58	
C(11)	0.7834(5)	0.4390(4)	0.7250(4)	46	0.4920(4)	0.2742(3)	0.8466(3)	29	
C(12)	0.8912(5)	0.3590(5)	0.7298(5)	63	0.4711(5)	0.3551(3)	0.9221(3)	39	
C(13)	1.0254(6)	0.4098(7)	0.7389(7)	83	0.4191(5)	0.3097(4)	1.0136(3)	48	
C(14)	1.0327(7)	0.4800(7)	0.8247(7)	86	0.2919(5)	0.2493(4)	0.9963(4)	47	
C(15)	0.9289(7)	0.5616(6)	0.8178(7)	87	0.3114(5)	0.1709(4)	0.9212(4)	50	
C(16)	0.7927(6)	0.5129(5)	0.8118(6)	63	0.3655(5)	0.2165(4)	0.8290(3)	39	
C(21)	0.5056(4)	0.3002(4)	0.8500(3)	35	0.7747(4)	0.3775(3)	0.7004(3)	38	
C(22)	0.3731(5)	0.2558(4)	0.8227(4)	47	0.8051(5)	0.4641(4)	0.7659(5)	53	
C(23)	0.3118(6)	0.2010(5)	0.9100(5)	61	0.9543(6)	0.4949(5)	0.7577(5)	73	
C(24)	0.2984(6)	0.2731(6)	0.9968(5)	62	1.0422(5)	0.4088(5)	0.7797(5)	61	
C(25)	0.4303(6)	0.3205(5)	1.0243(4)	57	1.0147(5)	0.3206(6)	0.7148(5)	72	
C(26)	0.4918(5)	0.3738(4)	0.9366(3)	46	0.8686(4)	0.2900(4)	0.7204(4)	47	

 $^{^{\}mathrm{a}}U_{\mathrm{eq}} = (1/6\pi^2) \Sigma_i \Sigma_j \beta_{ij} a_i a_j$

(3310-3230 cm⁻¹, Table 5) shows a distinct shift to lower frequencies for the latter, and therefore coordination of the amino group to tin is inferred.¹⁹

The strong band $\nu(NH_{pept})$ present in the IR spectra of H_2L (3230–3320 cm⁻¹) is missing in the spectra of 1 to 7, suggesting that the Cy₂Sn(IV) moiety is bonded to the peptide nitrogen. This correlates with shifts of $\nu(CO_{pept})$ observed in 2, 4 and 5, with respect to the corresponding sodium salts (1665–1670 cm⁻¹) to lower frequencies in the range 1635–1650 cm⁻¹ (Table 2). Considering the values of $\nu(CO_{pept})$ in 1, 3, 6 and 7 it seems justified to assume similar $N_{pept} \rightarrow tin$ bonding. The rather low values of $\nu(CO_{pept})$ of 1635 cm⁻¹ in 3 and 4 might indicate weak additional CO_{pent}→ Sn coordination in the solid state. The shifting of both these vibrations to appreciably higher values on solution of 3 in DMSO, and of 4 in methanol, might be correlated with breaking of such bonds (possibly also of Sn—N bonds in 3).

A molecule of 1 and a molecule of 2 are shown in Figs 1 and 3, respectively, and stereoviews of the appropriate unit cells in Figs 2 and 4. Both compounds, like most other diorganotin deriva-

tives of dipeptides hitherto studied, crystallize in the space group $P2_12_12_1$.

In the molecules of 1 and of 2, the atoms bound to tin form a distorted trigonal bipyramid with peptide-N and the cyclohexyl-C atoms occupying the equatorial positions whereas carboxylate-O and amino-N are in axial positions. The bond distances and angles within the two chelate rings of 1 and of 2 correspond essentially to those found in other comparable R₂SnL compounds. Thus, the equatorial angles C(11)–Sn–C(21) [123.6(2) ° in 1, 122.9(2)° in 2] are in the same range as in Me₂SnGlyMet $[123.8(3)^{\circ}]^{20}$ n-Bu₂SnGlyVal [125.3(3)°],8 tert-Bu₂SnGlyGly·H₂O or [121.7(4)°].²¹ A smaller angle is observed in Ph₂SnGlyGly [117.5(3)°]⁵ and a larger one in Et₂SnGlyTyr [131.4(2)°],⁹ but no obvious reasons are perceivable for such deviations. From the short N...O distances the presence of hydrogen bonds between N(2) and O(2) [2.882(6) Å (1), 2.979(5) Å (2)] is inferred. The molecular structure therefore is in principle identical with that of the other diorganotin derivatives of H₂GlyGly which have been characterized hitherto by X-ray diffraction: Ph₂SnGlvGlv⁵

tert-Bu₂SnGlyGly·H₂O.²¹ The present examples, like tert-Bu₂SnGlyGly·H₂O,²¹ demonstrate that the dichelate type of structure is apparently independent of the steric requirements of the organo groups at Sn. Similarly, substituents at the α positions of the dipeptide ligand, such as Me in 2 groups Me₂SnGlvMet²⁰ larger in Et₂SnGlyTyr, ⁹ also seem to have no serious steric effect on the molecular structure of R₂SnL. Intermolecular interactions are usually restricted to hydrogen bonds. (Et₂SnGlyHis)₂·CH₃OH is the only example we know which does not follow fully these rules, since one molecule coordinates via the imide-N of His to the central atom of the second Et₂SnGlyHis molecule, increasing its coordination number to six.²²

Chemical shifts $\delta(^{119}\text{Sn})$ of 1 and 2 are observed at -175.9 ppm (1), and at -183.4 ppm (2) [coupling constants $^{1}J(^{119}\text{Sn},^{13}\text{C})$: 553 Hz(1),

Table 4 Bond distances (Å) and angles (degrees) of Cy₂SnGlyGly (1) and Cy₂SnGlyAla (2)

	Cy ₂ SnGlyGly (1)	Cy ₂ SnGlyAla (2)
Sn-O(1)	2.170(3)	2.160(3)
Sn-N(1)	2.098(3)	2.086(3)
Sn-N(2)	2.281(4)	2.296(3)
Sn-C(11)	2.145(5)	2.151(4)
Sn-C(21)	2.143(4)	2.142(4)
O(1)-C(1)	1.287(6)	1.281(5)
O(2)-C(1)	1.216(6)	1.230(6)
O(3)-C(3)	1.237(7)	1.239(6)
N(1)-C(2)	1.451(6)	1.450(5)
N(1)-C(3)	1.323(7)	1.330(5)
N(2)-C(4)	1.476(7)	1.477(6)
C(1)-C(2)	1.522(7)	1.536(6)
C(3)-C(4)	1.504(7)	1.529(6)
C(2)-C(5)		1.531(7)
C(11)-C(12)	1.519(8)	1.535(6)
C(11)-C(16)	1.529(9)	1.509(6)
C(12)-C(13)	1.532(9)	1.518(7)
(C13)-C(14)	1.486(13)	1.534(7)
C(14)-C(15)	1.507(12)	1.507(8)
C(15)-C(16)	1.536(9)	1.534(7)
C(21)-C(22)	1.522(6)	1.515(7)
C(21)-C(26)	1.527(7)	1.534(7)
C(22)-C(23)	1.524(8)	1.558(8)
C(23)-C(24)	1.517(9)	1.489(9)
C(24)-C(25)	1.533(8)	1.523(10)
C(25)-C(26)	1.521(7)	1.525(7)
N(1)-Sn-O(1)	76.1(1)	76.3(1)
N(1)-Sn-N(2)	75.5(2)	74.9(1)
N(1)-Sn-C(11)	126.5(2)	111.1(1)
N(1)-Sn-C(21)	109.7(2)	126.0(1)
N(2)-Sn-O(1)	151.4(1)	150.8(1)

Table 4 continued

(2) 2.979(5)

	Cy ₂ SnGlyGly (1)	Cy ₂ SnGlyAla (2)
N(2)-Sn-C(11)	98.6(2)	98.9(1)
N(2)-Sn-C(21)	98.5(2)	96.1(2)
O(1)-Sn- $C(11)$	98.5(2)	95.9(1)
O(1)-Sn- $C(21)$	94.1(2)	96.8(2)
C(11)-Sn- $C(21)$	123.6(2)	122.9(2)
C(1)-O(1)-Sn	117.5(3)	117.4(3)
C(2)-N(1)-Sn	117.3(3)	118.4(3)
C(3)-N(1)-Sn	120.8(3)	121.9(3)
C(4)-N(2)-Sn	110.0(3)	110.2(3)
C(3)-N(1)-C(2)	118.9(4)	118.5(3)
O(1)-C(1)-O(2)	124.5(5)	123.3(4)
O(1)-C(1)-C(2)	116.6(4)	117.3(4)
O(2)-C(1)-C(2)	118.9(4)	119.5(4)
C(1)-C(2)-N(1)	111.0(4)	109.1(4)
N(1)-C(3)-O(3)	125.6(5)	126.0(4)
C(4)-C(3)-O(3)	118.4(5)	118.4(4)
C(4)-C(3)-N(1)	116.0(4)	115.5(4)
C(3)-C(4)-N(2)	113.8(4)	112.1(4)
C(12)-C(11)-Sn	111.5(4)	112.7(3)
C(16)-C(11)-Sn	109.4(4)	111.0(3)
C(12)-C(11)-C(16)	110.6(5)	111.3(3)
C(11)-C(12)-C(13)	111.2(6)	110.5(4)
C(12)-C(13)-C(14)	112.0(6)	111.4(4)
C(13)-C(14)-C(15)	110.4(7)	112.0(4)
C(14)-C(15)-C(16)	110.8(6)	111.1(5)
C(11)-C(16)-C(15)	110.9(6)	111.4(4)
C(22)-C(21)-Sn	109.8(3)	110.5(3)
C(26)-C(21)-Sn	113.6(3)	110.3(3)
C(22)-C(21)-C(26)	110.2(4)	110.8(4)
C(21)-C(22)-C(23)	110.7(4)	110.7(5)
C(22)-C(23)-C(24)	110.9(5)	110.3(5)
C(23)-C(24)-C(25)	111.1(5)	111.9(5)
C(24)-C(25)-C(26)	110.9(4)	110.7(5)
C(21)-C(26)-C(25)	111.1(5)	112.0(5)
N(1)-C(2)-C(5)		111.2(4)
C(1)-C(2)-C(5)		109.5(4)
Intermolecular hydrom $N(2) \dots O(2) (1-x,$	gen bond distances	
13(2) 0(2) (1-x, 1)	$0.3 \pm y, 1.3 - z$	
(1) 2.882(6)		

546 Hz(2)]. The $\delta(^{119}\text{Sn})$ values are in the upper part of the range that appears to be characteristic for pentacoordination; for example, for dibutyltin compounds, a range of -90 to -190 ppm was given.²³ Values of δ(¹¹⁹Sn) for Me₂SnL compounds lie in the lower range: Me₂SnGlyGly, $-92.0 \, \text{ppm};^7$ Me₂SnGlyMet, $-93.8 \text{ ppm};^{8}$ Me₂SnGlyVal, -89.4 ppm⁸). A high-field shift of cyclohexyltin compounds with respect to analogous methyltin compounds was also observed with R₃Sn derivatives of N-acetyl- β -alanylglycine = HL', of and

N-acetylglycyl- β -alanine = HL". The following $\delta(^{119}\text{Sn})$ values have been measured for Cy₃SnL': -23.6 and 32.1: for Me₃SnL', 25.6 and 142.1 (in CD₃OH and CDCl₃, respectively); for Cy₃SnL", 10.2; for Me₃SnL", 25.8 (in CD₃OD) (Huber, F and Schmiedgen R, unpublished results).

The ¹¹⁹Sn Mössbauer parameters of Cy₂SnL compounds, Table 6, confirm the assignments based on both X-ray and IR spectral data. The quadrupole splitting values, ΔE , are in fact comparable with those obtained for other dialkyltin derivatives of dipeptides, ^{4.8.9} for which an identi-

cal arrangement of donor atoms around tin was established by X-ray analysis or was proposed on the basis of spectral data. Literature ΔE data (solid-state) from 2.53 mm s^{-1} range (Me₂SnGlyMet⁸) 3.27 mm s^{-1} to (n-Bu₂SnGlyAla⁸), these differences accounting. essentially, for different values of C-Sn-C angles, the electric field gradient being dominated by the highly covalent Sn-C bonds.²⁴ On the other hand, calculations based on the point-charge model, 25 assuming a regular trigonal bipyramidal configuration around tin and using the pgs values

Table 5 Characteristic IR vibrations of Cy₂SnL and of H₂L and Na₂L (in cm⁻¹)

Compound		$\nu(NH)$	$\nu(NH_3^+)$	$\nu(NH_2)$	$\nu(\mathrm{CO}_{\mathrm{pept}})$	$\nu_{\rm as}({\rm COO^-})$	$\nu_{\rm s}({\rm COO}^-)$	$\Delta u^{ m a}$
H ₂ GlyGly		3295 vs	3080 vs	, —	1678 vs	1608 s	1410 vs	198
Na ₂ GlyGly				3380 s, br		1588 s	1413 vs	175
H ₂ GlyAla		3320 vs	3060 vs		1690 vs	1640 s	1410 s	230
Na ₂ GlyAla				3380 s, br	1665 s	1600 br	1415 br	185
H ₂ GlyVal		3260 s	3080 s		1690 vs	1625 vs	1410 vs	215
Na ₂ GlyVal				3315 s 3410 s	1670 vs	1590 vs	1420 vs	170
H ₂ GlyMet		3240 vs 3260 vs	3080 s		1690 vs	1630 vs	1410 vs	220
Na ₂ GlyMet				3350 vs, br	1665 vs	1600 vs	1405 s	195
H ₂ GlyTyr		3230 vs	3080 s		1685 vs	1615 vs	1405 vs	210
H ₂ AlaGly		3270 vs	3075 s		1690/1680 vs	1635 vs	1415 vs	220
Cy ₂ SnGlyGly	1	3060 s, br 3120 s, br 3210 vs			1650 vs	1622 s	1400 vs	222
In CD ₃ OD		_b			1675 vs	1630 vs	b	_
Cy ₂ SnGlyAla	2	3120 s 3220 vs			1650 s	1620 s, br	1392 vs	228
Cy₂SnAlaGly	3	3110 s, br 3190 s, br 3140 s, br 3280 s, br 3360 s, br			1635 sh	1615 s, br	1408 vs	207
In CD ₃ OD		b			1645 sh	1620 s, br	b	
In DMSO		b			1680 s	1625 vs	b	_
Cy ₂ SnGlyVal	4	3120 s 3220 vs, br			1635 s, br	1619 s	1395 sh	224
In CD ₃ OD		b			1680 vs	1625 vs	b	_
Cy₂SnGlyMet	5	3120 s, br 3200 s, br 3230 s, br			1650 sh	1625 br	1395 vs	230
Cy ₂ SnGlyPhe	6	3120 s, br 3220 s			1645 s, br	1620 s, br	1398 vs	222
Cy ₂ SnGlyTyr ^c	7	3210 vs 3295 vs			1660 vs	1580 s	1380 sh	200
In DMSO		_ь			1665 s, br	1625 s	ь	_

^a $\Delta \nu = \nu_{as}(COO^-) - \nu_s(COO^-)$.

^b Solvent bands overlap.

 $^{^{}c} \nu(OH) = 3590 \text{ cm}^{-1}$.

Figure 1 Structure of Cy₂SnGlyGly (1): view of molecule showing atom numbering scheme.

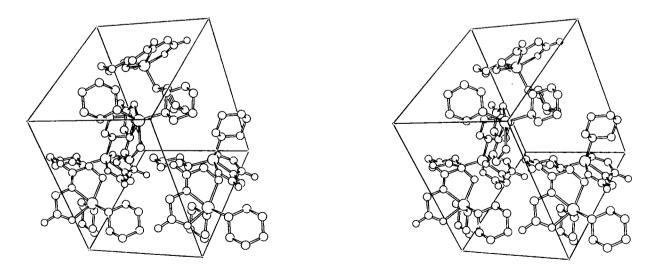


Figure 2 Structure of Cy₂SnGlyGly (1): stereoscopic view of the unit cell (a vertical; c horizontal).

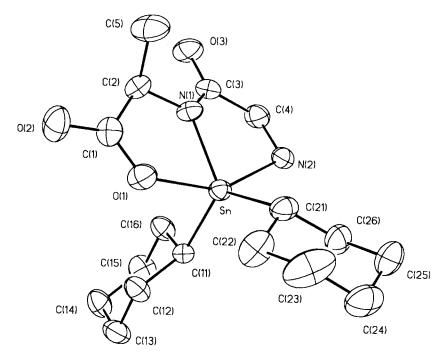


Figure 3 Structure of Cy₂SnGlyAla (2): view of molecule showing atom numbering scheme.

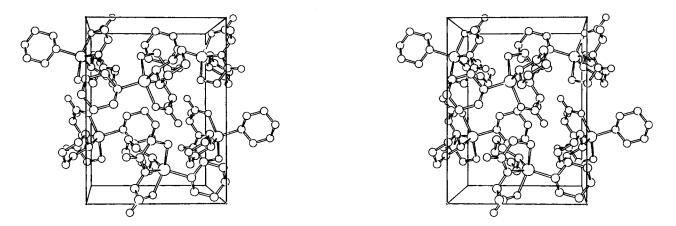


Figure 4 Structure of Cy₂SnGlyAla (2): stereoscopic view of the unit cell (a vertical; c horizontal).

Table 6 119Sn Mössbauer parameters of dicyclohexyltin derivatives of dipeptides Cy₂SnL^a

Compound	$\frac{\delta^{b}}{(\text{mm s}^{-1})}$	ΔE^{c} (mm s ⁻¹)	Γ_1^d (mm s ⁻¹)	Γ_2^d (mm s ⁻¹)
Cy ₂ SnGlyGly 1	1.42	3.11	0.88	0.84
Cy ₂ SnGlyAla 2	1.41	3.09	0.90	0.84
Cy ₂ SnAlaGly 3	1.41	3.08	0.92	0.82
Cy ₂ SnGlyPhe 6	1.32	2.72	0.83	0.81
Cy ₂ SnGlyTyr 7		2.83	0.85	0.84

^a In the solid state. T = 77 K. Absorber thickness $\approx 0.50 \text{ mg}^{119} \text{Sn cm}^{-2}$.

 $\begin{array}{lll} \text{reported} & \text{in} & \text{the} & \text{literature,} & ([Alk]^{tbc} = \\ -1.13 \text{ mm s}^{-1,26}, & [N_{pept}]^{tbc} = -0.30 \text{ mm s}^{-1,27} \\ [N_{\text{amino}}]^{tba} = 0.01 \text{ mm s}^{-1,26} \text{ and } [COO_{\text{unidentate}}]^{tba} = \end{array}$

 $-0.10 \, \mathrm{mm \, s^{-1}}^{28}$) give a $\Delta E_{\mathrm{calcd}}$ of 2.78 mm s⁻¹ which is consistent with all the quadrupole splitting values so far encountered for dialkyltin derivatives of dipeptides.

In vitro tests for tumor-inhibiting activity using the human mammary carcinoma cell line MDA-MB 231 (Table 7) showed the dicyclohexyltin compounds with the exception of 6 to possess rather high cytotoxicity, while the cytotoxic effects of the other compounds are considerably lower. Corresponding with results on the effect against murine 1210 cell cultures is demonstrated by the value of EC₉₀ (0.028 μ g cm⁻³). In vivo tests against leukemia P388 in mice, ^{1.3} the dibutyltin and diphenyltin derivatives are at least gradually more active than the dimethyltin compounds.

Compounds 1 and 2 proved to be rather toxic on i.p. administration to mice (DL₅₀: 1, 16 mg kg⁻¹, 2, 73 mg kg⁻¹). The toxicity of 1 of the antitumor activity of 1 against the murine leukemia P388 showed the compound not to effect a significant increase of lifetime.

Table 7 Inhibition of cell growth and [³H]-thymidine incorporation in human mammary carcinoma cell line MDA-MB 231 by some diorganotin derivatives of dipeptides (for numbers see Table 1 and Experimental section)

Concentration of compounds (mol dm ⁻³)	1	2	3	6	7	8	9	10	11	12
(1) Inhibition of	cell grow	vth ^a								
1×10^{-5}	7	5	1	1	2	83	111(88)	61(38)	7	3
5×10^{-6}	7	5		2		_	_ ` ′	77(93)	7	3
2×10^{-6}			_	18	_	_		`´	_	85 ^b
1×10^{-6}	5	5	1	82	3	93	111	99	35(20)	85
5×10^{-7}	26°	13	1	_	5	_		_	90`´	90
2×10^{-7}	70	27	11		34		_	_		
1×10^{-7}	97	76 ^d	70	100	96	90	107	103	99	_
(2) Inhibition of	[³ H]thyn	nidine in	согрога	ione						
1×10^{-5}	0	0	1	1	1	98	93(74)	18(3)	0	0
5×10^{-6}	0	0	_	1		_	<u> </u>	58(68)	0	0
2×10^{-6}	_			1			_	—`´´	_	90 ^b
1×10^{-6}	0	0	1	82	1	140	88	113	0(3)	110
5×10^{-7}	1°	1	1	_	1		_	_	34	118
2×10^{-7}	23	2	2		52	_		_		
1×10^{-7}	107	59 ^d	110	94	83	106	94	99	78	

^a T/C (%), number of cells compared with control. Values in parentheses are from repeat measurements.

b Isomer shift with respect to RT Ca 119SnO₃.

^c Nuclear quadrupole splitting.

^d Full width at half height of the resonant peaks, at lower and higher velocity than the spectrum centroid, respectively.

^b At 3×10^{-6} mol dm⁻³: (1) 19; (2) 21.

^c At 3×10^{-7} mol dm⁻³: (1) 32; (2) 1.

^d At 5×10^{-8} mol dm⁻³: (1) 94; (2) 97; at 2×10^{-8} mol dm⁻³: (1) 98; (2) 121.

^e T/C (%), inhibition in percentage uptake compared with control.

Acknowledgements Financial assistance by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie as well as a gift of dipeptides by Degussa AG, Frankfurt/Main, is gratefully acknowledged. We thank Asta-Werke, Bielefeld, for the toxicity measurements and for in vivo tests.

REFERENCES

- Huber, F, Roge, G, Carl, L, Atassi, G, Spreafico, F, Filippeschi, S, Barbieri, R, Silvestri, A, Rivarola, E, Ruisi, G, Di Bianca, F and Alonzo, G J. Chem. Soc., Dalton Trans., 1985, 523
- Huber, F and Barbieri, R in: Tin as a Vital Nutrient: Implications in Cancer Prophylaxis and Other Physiological Processes, Cardarelli, N F (ed), CRC Press, Boca Raton, 1986, pp 175-187
- Crowe, A J In: Metal-Based Anti-Tumor Drugs, Gielen, M F (ed), Freud, London, 1988, pp 103–149
- Pellerito, L, Lo Giudice, M T, Ruisi, G, Bertazzi, N, Barbieri, R and Huber, F *Inorg. Chim. Acta*, 1976, 17: L21
- 5. Huber, F, Haupt, H J, Preut, H, Barbieri, R and Lo Giudice, M T Z. Anorg. Allg. Chem., 1977, 432: 51
- Barbieri, R, Pellerito, L, Ruisi, G, Lo Giudice, M T, Huber, F and Atassi, G *Inorg. Chim. Acta*, 1982, 66: L39
- Ruisi, G, Silvestri, A, Lo Giudice, M T, Barbieri, R, Atassi, G, Huber, F, Grätz, K and Lamartina, L J. Inorg. Biochem., 1985, 25: 229
- 8. Mundus-Glowacki, B, Huber, F, Preut, H, Ruisi, G and Barbieri, R Appl. Organomet. Chem., 1992, 6: 83
- Vornefeld, M, Huber, F, Preut, H, Ruisi, G and Barbieri, R Appl. Organomet. Chem., 1992, 6: 75
- 10. Krause, E Ber. Deut. Chem. Ges., 1924, 57: 532
- Cromer, D T and Mann, J B Acta Crystallogr., 1968, A24:
 321

12. Cromer, D T and Libermann, D J. Chem. Phys., 1970, 53: 1891

- Frenz, B A Enraf-Nonius Structure Determination Package, 4th ed., Version 18, Enraf-Nonius, Delft, The Netherlands, 1981
- Sheldrick, G M SHELX76. A Program for Crystal Structure Determination, University of Cambridge, UK, 1976
- Keller, E SCHAKAL. A Fortran Program for the Graphic Representation of Molecular and Crystallographic Models, University of Freiburg, FRG, 1986
- von Angerer, E and Strohmeier, J J. Med. Chem., 1987, 30: 131
- Deacon, G B and Phillips, R J Coord. Chem. Rev., 1980, 33: 227
- Deacon, G B, Huber, F and Phillips, R J Inorg. Chim. Acta, 1985, 104: 51
- Ho, B Y K and Zuckerman, J J Inorg. Chem., 1973, 12: 1552
- Preut, H, Mundus, B, Huber, F and Barbieri, R Acta Cryst., 1986, C42: 536
- Preut, H, Mundus, B, Huber, F and Barbieri, R Acta Cryst., 1989, C45: 728
- Preut, H, Vornefeld, M and Huber, F Acta Cryst., 1991, C47: 264
- Holecek, J, Nadvornik, M, Handlir, K and Lycka, A J. Organomet. Chem., 1986, 315: 299
- Parish, R V In: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Long, G J (ed), Plenum Press, New York, Vol. 1, 1984, pp 527-575
- Bancroft, G M and Platt, R H Adv. Inorg. Chem. Radiochem., 1972, 15: 59
- Bancroft, G M, Kumar Das, V G, Sham, T K and Clark, M G J. Chem. Soc., Dalton Trans., 1976, 643
- Barbieri, R, Pellerito, L and Huber, F Inorg. Chim. Acta, 1978, 30: L321
- Barbieri, R, Silvestri, A, Huber, F and Hager, C D Canad. J. Spectrosc., 1981, 26: 194